
A Scalability Analysis of Classifiers in Text Categorization ∗

Yiming Yang
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, U.S.A.

yiming@cs.cmu.edu

Jian Zhang
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, U.S.A.

jian.zhang@cs.cmu.edu

Bryan Kisiel
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, U.S.A.

bkisiel@cs.cmu.edu

ABSTRACT
Real-world applications of text categorization often require
a system to deal with tens of thousands of categories de-
fined over a large taxonomy. This paper addresses the prob-
lem with respect to a set of popular algorithms in text cat-
egorization, including Support Vector Machines, k-nearest
neighbor, ridge regression, linear least square fit and logistic
regression. By providing a formal analysis of the compu-
tational complexity of each classification method, followed
by an investigation on the usage of different classifiers in
a hierarchical setting of categorization, we show how the
scalability of a method depends on the topology of the hi-
erarchy and the category distributions. In addition, we are
able to obtain tight bounds for the complexities by using the
power law to approximate category distributions over a hi-
erarchy. Experiments with kNN and SVM classifiers on the
OHSUMED corpus are reported on, as concrete examples.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Miscellaneous; H.4.m [Information Systems Ap-
plications]: Miscellaneous; I.5.4 [Pattern Recognition]:
Applications–Text processing

General Terms
Algorithms, Theory, Experimentation

Keywords
complexity analysis; hierarchical text categorization; power
law

∗(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’03, July 28–August 1, 2003, Toronto, Canada.
Copyright 2003 ACM 1-58113-646-3/03/0007 ...$5.00.

1. INTRODUCTION
Real-world applications of text categorization (TC) often

require a system to deal with tens of thousands of categories
defined over a large taxonomy (such as Yahoo). Although
many candidate classification methods have been published,
it is difficult to tell which one(s) would scale to applications
with such a large number of categories. A part of the diffi-
culty comes from the fact that many of them were evaluated
using only a relatively small number of categories (up to a
few hundred), leaving the scalability in larger applications
an open question.
For example, the OHSUMED corpus, which consists of

233,445 article abstracts in medical journals with 14,321
unique category labels (a large subset of the Medical Subject
Headings (MeSH)), has become an evaluation benchmark in
text categorization since 1994[19, 17]. To our knowledge,
only one TC method was evaluated using the full domain
of MeSH categories in OHSUMED, the k-nearest neighbor
approach reported in[19, 17]. Evaluations of other meth-
ods used much smaller subsets (23, 28 or 49 categories) [9,
6] until the Text Retrieval Conference (TREC-9) in 2000,
wherein a subset of 4904 categories from OHSUMED were
selected for the filtering track[13]. However, only three sys-
tems were able to submit complete results on that subset
of categories; the remaining systems used a subset of that
subset, consisting of 500 categories. Since 2001, the Opera-
tional TC workshops 1 have been focused on the real-world
applications of text categorization techniques, in which deal-
ing with large sets of categories is an issue. Yet, comparable
results on benchmark collections with respect to scaling re-
main rare. It is not only difficult to assess the state of the art
with respect to the scalability of TC methods; it is also diffi-
cult to draw thorough conclusions about their effectiveness
in large applications when only small subsets of the cate-
gories (say, 1% of the total) from the application domains
have been arbitrarily chosen for the evaluations.
Given the insufficient empirical evidence for assessing the

scalability of TC methods, a logical step at this stage is to
analyze the theoretical complexities of TC algorithms under
the assumption of dealing with very large sets of categories.
Presenting such an analysis is the main contribution in this
paper. First, we provide a formal complexity analysis for
five popular algorithms in conventional (non-hierarchical)
categorization, including Support Vector Machines (SVM),
k-Nearest Neighbor (kNN), Ridge Regression (RR), Linear
Least Squares Fit (LLSF), and Logistic Regression (LR).
Second, we analyze the computational cost in hierarchical

1http://www.info.uta.fi/sigir2002/html/ws5.htm

96

text categorization for two alternative approaches: training
a binary classifier for each category, and training a m-way
classifier for each group of m categories where m ≤ 2. Note
that by “m-way” we do not mean that the classifier has to
choose only one from m classes for each document. To the
contrary, the classifier can assign any number (0 to m) of
categories to a document. Third, we propose a new way to
assess the scalability of classifiers based on category distri-
butions (often skewed in TC applications). In particular, we
show how to use the power law to formally bound the com-
putational costs of classifiers in hierarchical classification).
The organization of this paper is as the follows: Section 2

introduces individual categorization methods and provides
a formal complexity analysis for each in conventional, non-
hierarchical categorization; section 3 analyzes the scaling
issues in hierarchical classification, and proposes a new way
to use the power law in category distributions to bound the
complexities of classifiers; section 4 reports our experiments
with kNN and SVM on the OHSUMED benchmark collec-
tion; section 5 summarizes the concluding remarks.

2. COMPLEXITY ANALYSIS FOR
NON-HIERARCHICAL TC

We choose five methods which have been popular in text
categorization and with high performance in benchmark eval-
uations, including SVM, kNN, RR, LLSF and LR.

2.1 Algorithms and Notation
One classification method may have more than one algo-

rithm for its implementation. We choose one algorithm for
each method which has had representative performance in
published evaluations. The SVM, LR and RR algorithms are
designed for binary classification, which requires one classi-
fier per category for “yes” or “no” decisions on documents
with respect to that category. The kNN and LLSF algo-
rithms, on the other hand, are designed for m-way classifi-
cation, which uses one classifier in total for all the categories.
Thus our analysis on the scalability in non-hierarchical cat-
egorization with M categories covers two cases: usingM bi-
nary classifiers, and using one M -way classifier, depending
on the type of the algorithm chosen for the method. In both
cases, we assume that efficient data structures, such as in-
verted indexing (when appropriate), are used for the sparse
representations of documents and categories. We neglect is-
sues of tokenization (stopword removal and stemming), fea-
ture selection and term weighting computation, since they
are common to all algorithms and have been heavily re-
ported on in the literature. We also leave parallel computing
out of the focus in this paper.
The variables used in the following subsections are:

• N – the number of training documents

• V – the number of features (the vocabulary size)

• M – the number of training-set categories (M < N in
general)

• I – the number of iterations for iterative algorithms
• �xi ∈ RV – the vector of the ith training document
whose elements are the within-document term weights

• yi ∈ {+1,−1} – the category indicator in a binary
classification model

• �yi ∈ {1, 0}M – the category-indicator vector in an M -
way classification model

• �w ∈ RV – the coefficient vector (“weight vector”) of a
linear model for a particular category

• 〈�xi, �xj〉 – the dot-product of two vectors �xi and �xj

• Ld – the average document length (word count)

• Lv – the average number of unique words in a docu-
ment

• Lf – the average number of documents indexed by a
word, and it is obvious that NLv = V Lf

Table 1 summarizes the time/space complexities for the
algorithms that we analyze in the following sub-sections.

2.2 SVM
SVM is a promising classification method developed by

Vapnik[14]. It applies Structural Risk Maximization, which
aims to minimize the generalization error instead of the em-
pirical error on training data alone. Multiple variants of
SVM have been developed [14, 6]; here we limit our discus-
sion to linear SVM due to its popularity and high perfor-
mance in text categorization[6, 18, 8].
The optimization of SVM (dual form) is to minimize:

�α∗ = argmin
�α

{−
nX

i=1

αi +
1

2

nX
i=1

nX
j=1

yiyjαiαj〈�xi, �xj〉}

subject to:

nX
i=1

αiyi = 0; 0 ≤ αi ≤ C

The prediction is given by:

f(x) =
NX

i=1

αiyi〈�xi, �x〉+ b = 〈�w∗, �x〉+ b

where �w∗ =
PN

i=1 αiyi�xi, and the bias b can be computed
using any “unbounded support vector” (0 < αusv < C):

b,= yusv − 〈�w∗, �xusv〉
To train a SVM, we need to solve the optimization prob-

lem using Quadratic Programming (QP) techniques. Gen-
erally speaking, QP can be complex and inefficient for large
data collections. Since, for SVM, both the objective func-
tion and feasible region are convex, it becomes a convex
QP, and can be solved more easily than general quadratic
programming. Furthermore, there exist algorithms that can
solve this more efficiently by utilizing the sparseness of the
text data.
Here we discuss the algorithm used in SVM-Light [7],

which is one of the most popular SVM packages in text cat-
egorization. The basic idea [3] is to iteratively decompose
the big QP problem into smaller ones (called “working set”)
and solve them sequentially until convergence is obtained.
The training-time complexity for each iteration is:

O(q2Lv) << O(N
2Lv)

where q is the size of working set, bounded by the training-
set size, and Lv is the number of unique words per document
on average. The space required is O(q2 +NLv). The num-
ber of iterations I is usually around one thousand for the
Reuters-21578 benchmark corpus, for example, and some-
times can go beyond ten thousand. Note that I would be
affected by the choice of q, making a purely theoretical com-
plexity analysis difficult. However, Joachims[7] showed a set

97

Table 1: Complexities of classifiers in non-hierarchical text categorization
Classifier Training Time Testing Time Space Type of

on M Categories per Document Complexity Algorithm
SVM O(MNc) c ≈ 1.2 ∼ 1.5 O(MLv) O(NLv + q

2) binary
kNN O(NLd) O(N

V
L2

v) +O(N) O(NLv) M-way
LLSF O(N2ks) O(MLv) O(NV) M-way
RR O(MINLv) O(MLv) O(NLv) binary
LR O(MINLv) O(MLv) O(NLv) binary

of empirical observations about the super-linear time com-
plexity of SVM in training with respect to N , the number of
training documents: O(N1.2) on a web page collection[12],
and O(N1.5) on the OHSUMED corpus.
The complexity analysis above is for the training time on

one category. Since the algorithm in SVM-Light (and other
SVM algorithms applied to text categorization) requires one
binary classifier for every category, the total training-time
complexity for M categories is therefore O(MNc), where c
is some domain-specific or corpus-specific constant.
In the testing phase, the dominating part is to compute

the dot-product of the input vector (document) and the
model vector for every class, which has a complexity of
O(MLv). For simplicity, we could consider Lv as a param-
eter whose value depends on the domain or application but
not on the training-set size. Thus, we can say that the online
response time of SVM is O(M) per document.

2.3 kNN
Different from SVM (and other methods in this paper),

kNN is a “lazy-learning” algorithm, which means that it
does not have an off-line learning phase. The so-called “train-
ing” phase in kNN is simply to index the training data for
later use. Building the inverted index of documents for clas-
sification[15] is a mature technique with a complexity of
O(NLd). If we consider Ld, the average length of docu-
ments, as an application-specific constant, then the training
complexity of kNN is O(N), i.e., linear in the training-set
size both in time and space.
In the testing phase, each new document is compared

against all the training documents using a pre-defined sim-
ilarity metric. The k top-ranking training documents are
then selected, and used to compute a score for every cate-
gory as follows:

score(cj |�x) =
X

�xi∈kNN&�xi∈cj

sim(�x, �xi)

The document scoring part takes O(LfLv) = O(
NL2

v
V
) time

[15] where Lf is the number of postings per word on aver-
age in the inverted indexing, and V is the vocabulary size.
Using a modified version of quicksort, one can obtain the
k top-ranking documents (not sorted) in O(N) time. Re-
call that the average computing time for standard quick-
sort is O(N log2N), accomplished by splitting the input list
into two portions, and then splitting each portion again and
again recursively. However, since our purpose is to find the
top k neighbors, not to sort the list, we only need to apply
quicksort to the larger portion in each step of the recursion,
until a portion of size k is obtained. Sorting the resulting k
documents, if desirable, takes O(k log2 k) time in addition,
which is negligible since k << N . The category scoring part
is O(k), assuming the use of a hash table to hold the cumu-
lative scores for categories during the computation. This
part is also negligible in the complexity analysis.

2.4 Linear Regression Using Truncated SVD
The Linear Least Squares Fit (LLSF) mapping method

has had performance competitive with SVM and kNN in
benchmark evaluations[17, 18]. The optimization problem
in LLSF is defined as follows:

W∗ = argmin
W

‖XW−Y‖2
F

= argmin
W

{
NX

i=1

MX
j=1

(〈�xi, �wj〉 − yij)
2}

where X is a document-term matrix whose elements are
term weights in training documents, and Y is a document-
category matrix whose elements yij ∈ {0, 1} indicates whether
the ith training document belongs to the jth category. The
solution W is a term-category matrix whose element wtj is
the regression coefficient (“weight”) of term t in the predic-
tion of category cj . The Frobenius matrix norm is defined
as ‖A‖2

F =
P

i,j a
2
ij .

If the matrixXTX is non-singular, then the LLSF solution
has the form of

W∗ = (XTX)−1XTY

However,XTX is a term-term matrix whose inverse may not
exist. The “if” condition is equivalent to assuming that all
the words are independent of each other, which is obviously
not true in reality. A more viable approach is to compute
the pseudo-inverse X+ using the truncated Singular Value
Decomposition (SVD) of matrix X, which is guaranteed to
find a solution in the form of

W∗ = X+Y

A nice property of the pseudo-inverse is that it only de-
pends on matrix X, not on matrix Y, which means that we
only need to compute it once, based on the terms in train-
ing documents, and then use it again and again in fitting
the regression functions with respect to categories. In this
sense, this method is quite efficient whenM is very large, as
compared to training binary classifiers M times repeatedly
and independently.
The Lanczos algorithm introduced in [2] and thoroughly

analyzed by [1] is particularly efficient for solving LLSF on
very large and sparse matrices, and has a good convergence
property. The step-wise complexities are given below:

Step 1. Compute the truncated SVD

X = USVT ,

where U is matrix of right singular vectors, V is the
matrix of left singular vectors, S is a diagonal matrix
with the ks largest singular values (on the diagonal in a
descending order), and ks is the user-specified number
of singular values to compute. The time complexity of
SVD is O(Lks) where L = max{N, V }, and the space

98

requirement is O(Nks) for storing either U or V. The
value of ks can be empirically chosen through valida-
tion. In our experiments with LLSF on benchmark col-
lections (Reuters news stories, MEDLINE documents,
etc), we observed the optimal ranges of ks to be be-
tween a few hundred and one thousand[16].

Step 2. Compute the pseudo-inverse

X+ = VS−1UT = XTUS−2UT

The time complexity here is O(ksN
2), dominated by

the computation of US−2UT . The space complexity is
O(NV), for storing matrix X+.

Step 3. Compute the solution matrix W∗ = X+Y. Since
the matrixY (document-category matrix) is very sparse,
it is more efficient to compute the transpose

(W∗)T = YT (X+)T

which enables the use of the inverted indexing of Y.
The time complexity is O(NLc) where Lc is the av-
erage number of categories per document. The space
needed for the inverted indexing is also O(NLc). Ma-
trix X+ would make the space complexity O(VM) if
we need to keep it in a dense form. However, our
previous work showed that aggressive elimination of
non-influential elements from that matrix would not
cause any loss of classification accuracy[16].

Among the above steps, the dominating part in the train-
ing time of LLSF is the matrix multiplication in Step 2, with
a complexity of O(ksN

2). As for the space complexity, the
dominating part is the storage required for matrix X+, with
a complexity of O(NV). For the testing phase, the complex-
ities of LLSF are the same as those in SVM. That is, both
use one vector representation of a linear model per category,
and both compute the dot-product of a new document and
a category vector in the same way.

2.5 Ridge Regression (RR)
Ridge regression is a “regularized” version of linear regres-

sion. We limit our discussion to a binary version of the LR
algorithm, which has been reported in the literature with a
performance competitive with SVM and linear regression on
benchmarks data sets[21, 10]. The classification problem is
defined as minimizing the the following objective function:

�w∗ = argmin
�w

{ 1
n

NX
i=1

(yi − 〈�w, �xi〉)2 + λ〈�w, �w〉}

It has a close-form solution as:

�w∗ = (
NX

i=1

�xi�x
T
i +NλI)

−1
NX

i=1

�xiyi

= (XTX+NλI)−1XTY

Note that using (XTX+NλI)−1 instead of (XTX)−1 makes
the transformation matrix non-singular, provided λ > 0. As
a result, we can compute the matrix inverse without SVD.
A variant of Gauss-Seidel[5] has been used for solving the

ridge regression problems[21], which is an iterative algorithm
for fitting a binary classification model for every category.
The training time complexity is O(INLv) per category, or
O(MINLv) for all the categories. The testing phase time
and space complexities are exactly the same as those for
SVM and LLSF. The space required in training is to store
the inverted index of training documents; that is, on the

order of O(NLv). As for the value of I , several hundred
iterations have usually been enough for convergence in our
experiments.
It is possible, in principle, to improve the efficiency of

the current RR algorithm by computing the (
PN

i=1 �xi�x
T
i +

NλI)−1 just once, and then sharing the resulting transfor-
mation matrix in the per-category computation cycles. This
would yield a significant efficiency gain when the number of
categories is large. We leave this potential to future work,
and limit our discussions on RR to the current algorithm.

2.6 Logistic Regression (LR)
The logistic regression model estimates the conditional

probability

p(y | �x, �w) = 1

1 + exp(−y〈�w, �x〉)
where the model is fitted by maximizing the conditional log-
likelihood p

1−p
, which is equivalent to minimizing the follow-

ing:

�w∗ = argmin
�w

{ 1
N

NX
i=1

log(1 + exp(−yi〈�w, �xi〉))}

In practice, the “regularized” version is preferred:

�w∗ = argmin
�w

{ 1
N

NX
i=1

log(1 + exp(−yi〈�w, �xi〉)) + λ〈�w, �w〉}

Another variant of the Gauss-Seidel algorithm[21] has been
used for solving LR, having exactly the same big-O notion
complexities as we presented above for RR.

3. COMPLEXITY ANALYSIS FOR
HIERARCHICAL TC

We have presented two types of categorization algorithms
for non-hierarchical classification: binary classification algo-
rithms, with complexities that grow linearly in the number
of categories (SVM, LR and RR), and m-way classification
algorithms (kNN and LLSF), with complexities that do not.
Now we analyze their use and the computational cost in
hierarchical text categorization. SVM and kNN are used
as examples to illustrate the attendant issues, which should
generalize to the other classifiers as well.

3.1 Classifier Allocation over the Hierarchy
Given a pre-defined taxonomy of categories (mostly in a

tree structure but sometimes with acyclic graph parts), hi-
erarchical classification is accomplished by allocating clas-
sifiers over individual nodes in the hierarchy, making local
predictions for each test document and combining the local
predictions (binary decisions with or without weights) for
final decisions. Without loss of generality, we assume that
all categories are assigned to leaf nodes 2.
The two strategies typically used in hierarchical catego-

rization are:

1) allocating an m-way classifier on each non-leaf node;

2) allocating a binary classifier on each pair of parent-
child nodes;

2For cases where non-leaf nodes have their own category
labels, we can convert them to the above situation by adding
one child node for each, representing the non-leaf category.

99

Let K be the number of leaf nodes on a hierarchy, K′ be
the number of non-leaf nodes, and b > 1 be the branching
factor of on average. It follows that 1 + (b− 1)K′ = K.
For example, if K = 10, 000 and b = 10, then K′ = 1, 111.

Thus, the first strategy requires 1,111 b-way classifiers over
the hierarchy, while the second requires K+K′−1 = 11, 110
binary classifiers.

3.2 Complexities in Hierarchical Settings
Using Qm and Q2 to denote the total complexity of using

m-way and binary classifiers over the hierarchy respectively,
we have:

Qm =

h−1X
i=0

miX
j=1

O(nc
ij) =

h−1X
i=0

O(Nc
i)

miX
j=1

πc
ij

≤ O(Nc
0)

h−1X
i=0

miX
j=1

πc
ij (1)

and

Q2 = b×
h−1X
i=0

miX
j=1

O(nc
ij) ≤ b×O(Nc

0)

h−1X
i=0

miX
j=1

πc
ij (2)

where

• h is the depth of the hierarchy;

• mi is the number of categories defined at the ith level;

• i = 0, 1, . . . , h, and i = 0 corresponds to the root level;

• j = 1, 2, . . . , mi are ranks of categories based on their
sizes at level i;

• nij is the number of local training documents;

• Ni =
Pmi

j=1 nij , and we have Ni ≤ N0 (the number of
document-category pairs in the training set);

• πij =
nij
Ni

and
Pmi

j=1 πij = 1;

• O(nc) is the complexity of a single classifier, assuming
polynomial time in the size of the local training set.

When using kNNs, for example, we have c = 1 if consider-
ing Lv (the average number of unique words per document)
invariant with respect to the training-set size.
Substituting c = 1 in formula 1 yields a complexity of:

Qknn ≤ O(N0)

h−1X
i=0

miX
j=1

πij = h ·O(N0)

This complexity does not depend on the category distri-
butions or on the number of classifiers needed over the hi-
erarchy; it is simply linear in the depth (h) of the hierarchy
and the single-classifier complexity on the top-level training
set.
When using SVMs, on the other hand, we do not get

as simple-formed a complexity as that of kNNs because
the single-classifier complexity is super-linear (or higher) in
SVM. For example, c ≈ 1.5 for SVM on the OHSUMED
corpus, based on empirical observations[6]. Nevertheless,
the complexity can be computed using formula 2, where it
does depend on category distribution over the hierarchy.

3.3 Compleixty Estimation Using the Power
Law

Given the dependency between category distributions over
a hierarchy and the complexities of classifiers (especially for
those with super-linear or higher complexity), we wonder
whether we could characterize the typical distributions by
using a well-known family of statistical density functions,
and whether we could use a parametric analysis to make
the complexity assessment simpler yet still accurate. These
questions lead us to the examination of the “power law” in
text categorization.

3.3.1 Power law as a general phenomena
As an interesting phenomenon, the power law has been

observed in multiple domains, including an early discovery
in cognitive science regarding human learning rate through
repetitive tasks[11], and the recent observations about the
Internet topology[4]. The application of Zipf’s law to word
distribution over documents is another well-known exam-
ple, which has been commonly observed in Information Re-
trieval. The power law has an exponential form: y = αx−β

(or, equivalently, log y = logα − β log x), where α > 0 and
β > 0 parameterize the equation. The law simply says that
two variables, x and y, are linearly correlated with a negative
slope in log-scale. When β = 1, the power law reduces to
Zipf’s law. We do not know whether the observation of the
power-law phenomena in multiple domains is merely a co-
incidence or whether a deeper philosophical interpretation
could be made. Regardless, we have found that category
distributions in data from real-world applications are often
highly skewed, including news stories, journal articles and
web pages [18, 20]. The power law is therefore a natural
candidate for the characterization of those skewed distribu-
tions - more appropriate than using Zipf’s law (assuming a
fixed slope of -1) or a uniform distribution (assuming a flat
slope of 0).

3.3.2 Power law in category distributions
Assuming the category distribution in a corpus obeys the

power law, we have

nj = αj
−β

where j = 1, 2, . . . ,M are the size-based ranks of categories,
and nj is the document frequency of the jth category in that
corpus. Parameter α can be determined by setting j = 1,
which yields α = n1, the number of documents in the most
common category. Parameter β can be computed by fitting
a regression line for the observed rank/frequency pairs in
that corpus, and the slope of that is line is the value of −β.
Thus, the equivalent formula for the power law is:

nj = n1 j
−β (3)

Figure 1 shows the category distributions in several bench-
mark corpora of documents, including RCV1 (Reuters news
stories), Hoover (web pages of industrial companies) and
OHSUMED[17, 20, 8]. The x-axis is category rank; the
y-axis is document frequency. Each curve is obtained by in-
terpolating the rank/frequency pairs in a corpus. The slope
of each curve shows how skewed the category distribution
is, and the slice corresponding to a particular category re-
flects the amount of data that category has. Obviously, all
the curves differ substantially from a flat line (uniform dis-
tribution), but the high-frequency region of each curve is
approximately linear, although the slopes differ from node
to node. This implies that we can use the power law to esti-
mate the document frequencies with high accuracy, for the
subset of relatively common categories in a corpus. This is

100

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000

C
a

te
g

o
ry

 F
re

q
u

e
n

c
y

Category Rank

OHSUMED (14,321 cat.)
Hoover.com (298 cat.)

RCV1 Industries (350 cat.)
RCV1 Topics (103 cat.)

RCV1 Regions (296 cat.)

Figure 1: Category rank vs. frequency in bench-
mark corpora

important for analyzing the complexity of hierarchical cate-
gorization, since those frequencies dominate the complexity
in the quantityQm =

Ph−1
i=0

Pmi
j=1O(n

c
ij), particularly when

c > 1. The same statement applies to the complexity anal-
ysis for Q2.
Figure 2 shows the multi-level category distributions in

OHSUMED, where the MeSH categories are defined over 10
levels on the hierarchy. To make the linear portions of those
curves more visible, we cut off the right-most portion of each
curve to make the area underneath that curve correspond to
85% of the data in that level. Interestingly, all the curves
have a similar trend, except those at the top one or two
levels. If we fit a straight line as the approximation of each
curve, then the slopes of all of the lines are similar to each
other, and, all can be approximated by the the slope of the
global curve.
Next, we show how to use the power law to focus on the

dominating components at each level in the complexity anal-
ysis, and to obtain simpler formulas for computing the exact
complexity (or tight bounds) in several interesting cases.

3.3.3 Bound analysis
The power law for individual levels has the form

nij ≈ ni1 j
−βi (4)

where ni1 is the number of training documents in the most
common category at the ith level, and βi is the level-specific
slope of the regression line. Using this to estimate of the
complexity Qm, we have:

Qm =

h−1X
i=0

miX
j=1

O(nc
ij)

≈
h−1X
i=0

miX
j=1

O(nc
i1j

−cβi)

=
h−1X
i=0

O(nc
i1)

miX
j=1

j−cβi (5)

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000

C
a

te
g

o
ry

 F
re

q
u

e
n

c
y

Category Rank

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Level 9

Level 10
Levels 1-10

Figure 2: Category distributions at different lev-
els of MeSH in OHSUMED (rare categories corre-
sponding to 15% of the data at each level are not
shown in the graph).

The upper bound of the complexity is:

Qm ≤
h−1X
i=0

O(Nc
0)
g(U)(mi, cβi)

[g(L)(mi, βi)]c
(6)

where N0 is the size of the top-level training set, and func-
tion g(.) is defined as:

g(m,a)
def
=

mX
j=1

j−a.

We now show the upper bound g(U)(m,a) and the lower
bound g(L)(m,a) of this function, conditioned on the pa-
rameter values:8<

:
g(m,a) =

Pm
j=1 j

a = m : a = 0
ln(1 +m) < g(m,a) < 1 + lnm : a = 1
1−(m+1)1−a

a−1
< g(m,a) < a−m1−a

a−1
: a �= 0, 1

The first cast (a = 0) corresponds to a uniform distribution
of categories. The second case (a = 1) corresponds to a
Zipf’s law distribution, whose bounds are derived based on
the following inequality:

Z m+1

1

1

x
dx <

mX
j=1

j−1 < 1 +

Z m

1

1

x
dx.

For the third case (0 < a < 1 or 1 < a), we used the following
inequality to derive the bounds:

Z m+1

1

x−adx <
mX

j=1

j−a < 1 +

Z m

1

x−adx.

We need one more piece to establish the proof of For-
mula 6, that is: ni1 ≤ N0

g(mi,βi)
.

Proof. Given
Pmi

j=1 nij = Ni ≤ N0, we have:

miX
j=1

nij = ni1

miX
j=1

j−βi ≤ N0

101

ni1 ≤ N0Pmi
j=1 j

−βi
=

N0

g(mi, βi)
(7)

Qm = O(

h−1X
i=0

nc
i1

miX
j=1

j−cβi)

≤ O(
h−1X
i=0

Nc
0

[g(L)(mi, βi)]c
g(U)(mi, cβi))

= O(Nc
0)

h−1X
i=0

g(U)(mi, cβi)

[g(L)(mi, βi)]c
(8)

Formula 6 suggests that we can get a relatively accurate
assessment of the total complexity by running one m-way
classifier at the top level with the full training set (for a
realistic measure of O(Nc)), and plugging the corpus-specific
parameters (mi and βi values) into the function g(m,x).
To estimate the Q2 complexity is similar: we just need to
run one or a few binary classifiers with the full training set
to get some assessment of O(Nc

0), and then use Formula 6
enlarged by a factor of b. These close-form approximations
and bounds greatly simplify the complexity assessment.

4. CONCRETE EXAMPLES
Let us use SVM and LLSF classifiers on OHSUMED for

examples. Let the complexity parameter c be 1.5 in SVM,
and let c be 2 in LLSF, considering ks as a constant. The
hierarchy has a depth h = 10, an average branching factor
b ≈ 9, and a global power-law parameter β ≈ 0.84 (Fig-
ure 2). For a rough estimate, we set βi ≈ β = 0.84, and
mi ≈ bi. Substituting those parameters in Formula 6 and
multiplying the result by a factor of b, we have a complexity
of:

Qsvm-train ≤ b ·O(Nc
0)

h−1X
i=0

1
cβ−1

(cβ −m1−cβ
i)

[1
cβ−1

(1− (mi + 1)1−cβ)]c

≈ 9 · O(N1.5
0)

9X
i=0

3.85 × (1.26− (9i)−0.26)

[3.85(1 − (9i + 1)−0.26)]1.5

≈ 61.8 ·O(N1.5
0) (9)

Similarly, the training-time complexity for using m-way
LLSFs over the hierarchy is computed as:

Qllsf-train ≤ O(Nc
0)

h−1X
i=0

1
cβ−1

(cβ −m1−cβ
i)

[1
cβ−1

(1− (mi + 1)1−cβ)]c

≈ O(N2
0)

9X
i=0

1.47 × (1.68− (9i)−0.68)

[1.47(1 − (9i + 1)−0.68)]2

≈ 13.3 · O(N2
0) (10)

To get some concrete measures, we ran kNN and SVM on
a large subset of OHSUMED data in a “flat” fashion, which
means to use one kNN for the entire set of categories and
documents, or to use one SVM for each category but on the
entire set of training documents. With kNN, we conducted
the experiments both on the full domain of MeSH categories
and on the Heart Diseases (HD) sub-domain. With SVM,
we conducted the experiment only with the HD sub-domain.
The corpus contains a total of 233,445 documents dated
1987-1991, with 14,231 unique categories assigned to those
documents. We arbitrarily chose the documents from 1987
for training and the documents from 1988 for testing. The
same set of documents were used in the full-domain (MeSH)

and the sub-domain (HD) experiments; the only difference in
those cases was in document labeling. For the full-domain
experiments, we used the original category labels; for the
sub-domain experiments, we replaced each non-HD category
label with a dummy name of “None”. Table 2 summarizes
the data set statistics, and Table 3 shows the CPU times
and the performance scores (in F1) for those runs. A 2.0
GHz Pentium 4 Xeon PC with 2GB RAM was used for these
experiments.

Table 2: Statistics of Data Sets
Documents Uniq. Cat. Assigned Cat. Domain

OH.87: 36,890 10,889 439,956 MeSH
OH.88: 47,054 11,474 566,690 MeSH
HD.87: 36,890 94 3,768 HD
HD.88: 47,054 98 4,961 HD

Table 3: CPU times for flat kNN and SVMs
SVM/HD kNN/HD kNN/MeSH

training time 40 min 11 sec 12 sec
testing time 25 min 311 min 328 min
micro-avg F1 0.516 0.526 0.478

Based on these results, we can make further projections
for these classifiers with respect to scaling.
SVM training time. Using the training time of SVM

on 94 HD categories to estimate the training time of using
SVMs in non-hierarchical TC with the full domain of 14,321
MeSH categories, we have:

40

94
× 14, 321/60 min = 102 hours

For hierarchical SVMs, we can use formula 9:

61.8 · O(N1.5
0) = 61.8 · 40

94
= 26.3 min

Clearly, using hierarchical TC can substantially enhance the
scalability for SVM in terms of training time. Whether or
to what degree this efficiency gain comes at the cost of ef-
fectiveness is a question for future research.
SVM online response time. In the HD experiment,

the average response time per document was:

25 min

47, 054
× 60 ≈ 0.03 sec

When using flat SVMs, since the response time is linear
in the number of training-set categories, the projected re-
sponse time for the problem with the full-domain of 14,321
categories in OHSUMED would be:

14, 321

94
× 0.03 ≈ 4.6 sec

When usnig hierarchical SVMs, and with a pachinko-machine
type of propagation (i.e., a lower level SVM is activated only
if its parent makes a “yes” decision), the online computation
time would be:

0.03

94
× h× b′ ≈ 0.003 × b′ sec

where b′ is the branching factor on average in the beam
search.
KNN online response time. Recall that the main com-

putations in kNN are in the testing phase. The complexity
of each level of kNNs in the hierarchy is roughly the same

102

(or less) as that of flat kNN with the full set of documents.
Therefore, a hierarchical use of kNNs always increases the
computational cost by a factor of h, which is the height of
the hierarchy. Thus, hierarchical classification with kNNs is
worth doing only if the effectiveness can be significantly im-
proved by doing so. The online response time per document
of flat kNN was empirically measured (Table 3) as:

60× 328 min
47, 054

= 0.4 sec

Using this result to project the online response time of kNNs
in hierarchical categorization with h = 10 and b = 9 (the pa-
rameter values in OHSUMED), and assuming the pachinko-
machine policy again, we have the estimated CPU seconds
per document as:

0.4× (1 + b
−1 − b−h

1− b−1
· b′) < 0.4× (1 + b−1

1− b−1
· b′)

= 0.4× (1 + 0.125b′) = 0.4 + 0.05b′ sec
This formula is based on the assumption that the size of the
local training set at each level reduces by a factor of b = 9
on average.

5. SUMMARY
In this paper, we first present complexities of five popu-

lar algorithms in non-hierarchical text categorization, then
introduce their usage in hierarchical settings in types of bi-
nary andm-way classifiers. By using the power law to model
category distributions, we are able to derive bounds of com-
plexities for polynomial-time algorithms in hierarchical text
categorization. Finally, concrete examples with kNN and
SVM are given on the OHSUMED benchmark corpus.
We hope this study provides useful insights to the as-

sessment of current techniques in text categorization with
respect to scaling. For future work, we plan to conduct
large-scale experiments with several high-performing classi-
fication methods in order to investigate the tradeoff between
the efficiency and effectiveness of those methods in solving
very large classification problems.

6. ACKNOWLEDGMENTS
We thank Jamie Carbonell at Carnegie Mellon University

for the fruitful discussion about the power law observations
in early AI research. This research is sponsored in part by
the National Science Foundation (NSF) under grants EIA-
9873009 and IIS-9982226, and in part by the DoD under
award 114008-N66001992891808. However, any opinions or
conclusions in this paper are the authors’ and do not neces-
sarily reflect those of the sponsors.

7. REFERENCES
[1] M. Berry. Large-scale singular value computations.

volume 6-1, pages 13–49, 1992.
[2] J. Cullum and R. Willoughby. Lanczos algorithm for

large symmetric eigenvalue computations. In Theory,
volume 1, Boston, MA, 1985.

[3] R. F. E. Osuna and F. Girosi. An improved training
algorithm for support vector machines. In Neural
Networks for Signal Processing VII–Proceedings of
1997 IEEE Workshop, New York, 1995.

[4] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology. In
SIGCOMM, 1999.

[5] G. Golub and C. V. Loan. Matrix Computations (3rd
edition). Johns Hopkins University Press, Baltimore,
MD, 1996.

[6] T. Joachims. Text Categorization with Support Vector
Machines: Learning with Many Relevant Features. In
European Conference on Machine Learning (ECML),
pages 137–142, Berlin, 1998. Springer.

[7] T. Joachims. The Maximum-Margin Approach to
Learning Text Classifiers: Methods, Theory, and
Algorithms. Ph.D. thesis, University of Dortmund,
2000.

[8] D. Lewis, F. Li, T. Rose, and Y. Yang. The reuters
corpus volume i as a text categorization test
collection. In Journal of Machine Learning Research,
page (to appear), 2003.

[9] D. D. Lewis, R. E. Schapire, J. P. Callan, and
R. Papka. Training algorithms for linear text
classifiers. In 19th Ann Int ACM SIGIR Conference
on Research and Development in Information
Retrieval (SIGIR’96), 1996. 298-306.

[10] F. Li and Y. Yang. A loss function analysis for
classification methods in text categorization. In ICML,
2003 (submitted).

[11] A. Newell and P. Rosenbloom. Mechanisms of skill
acquisition and the law of practice. In J. Anderson,
editor, Cognitive Skills and Their Acquisition, pages
chapter 1, pp 1 –55, Hillsdale, NJ, 1981. Lawrence
Erlbaum Associates, Inc.

[12] J. Platt. Sequetial minimal optimization: A fast
algorithm for training support vector machines. In
Technical Report MST-TR-98-14. Microsoft Research,
1998.

[13] S. Robertson and S. Walker. Microsoft cambridge at
trec-9. In D. Harmon, editor, Proceedings of the
Nineth Text REtrieval Conference (TREC-9), 2001.

[14] V. Vapnik. Statistical Learning Theory. John Wiley
and Sons, New York, 1998.

[15] Y. Yang. Expert network: Effective and efficient
learning from human decisions in text categorization
and retrieval. In 17th Ann Int ACM SIGIR
Conference on Research and Development in
Information Retrieval (SIGIR’94), pages 13–22, 1994.

[16] Y. Yang. Noise reduction in a statistical approach to
text categorization. In Proceedings of the 18th Ann Int
ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’95),
pages 256–263, 1995.

[17] Y. Yang. An evaluation of statistical approaches to
text categorization. Journal of Information Retrieval,
1(1/2):67–88, 1999.

[18] Y. Yang and X. Liu. A re-examination of text
categorization methods. In The 22th Ann Int ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’99), pages 42–49, 1999.

[19] Y. Yang and J. Pedersen. A comparative study on
feature selection in text categorization. In
J. D. H. Fisher, editor, The Fourteenth International
Conference on Machine Learning (ICML’97), pages
412–420. Morgan Kaufmann, 1997.

[20] Y. Yang, S. Slattery, and R. Ghani. A study of
approaches to hypertext categorization. In Journal of
Intelligent Information Systems, volume 18, pages
219–241. Kluwer Academic Press, 2002.

[21] T. Zhang and F. J. Oles. Text categorization based on
regularized linear classificatin methods. In
Information Retrieval, volume 4, pages 5–31, 2001.

103

